Sampling Methods & Inclusion/Exclusion criteria
INTRODUCTION
Methodology

- Study design
- Reference/target population
- Source population
- Sampling frame
- Inclusion & exclusion criteria
- Sample size determination
- Sampling techniques
- Randomization techniques
- Study time and duration
- Tools and materials
- Data collection
- Intended statistical test
- Operational definition
- Ethical consideration
- Framework of study
Methodology

• Random sampling vs. randomization

Population
- Random sampling
 - Sample

Population
- Sample
 - Randomization

Vs.
SAMPLING METHODS
Sampling

• Sample: a smaller (but hopefully representative) collection of units from a population used to determine truths about that population.
Sampling

• Reason of sampling;
 – Resources (time, money) and workload
 – Give results with known accuracy (can be calculated mathematically)
Sampling

• Sample can be obtained by identifying:
 1. Reference population/target population
 2. Source population
 3. Study population
 4. Sampling frame
 5. Sample
Sampling

• Process of sampling
 – Define population of concern
 – Specify sampling frame
 – Determine sample size
 – Specify sampling method
 – Implement sampling plan
 – Sampling and data collection
 – Review the sampling process
Sampling

• Population
 – Including all people or items with the characteristic one wishes to understand
 – Since time and money is usually limited, the goal is to find a representative sample (or subset) of the population.
Sampling

• Reference/target population:
 – To whom do you want to generalize your findings.
 – E.g. Malaysian adults population, Kelantan’s adult population, all patient’s with diabetes in Kelantan.
Sampling

• Source population;
 – The group from whom the study population is drawn

• Study population
 – The group studied
Sampling

- Samples are usually obtained from a sampling frame.
- Based on inclusion and exclusion criteria
- Sampling frame:
 - List from which the potential respondents are drawn.
 - Must be representative of the population
Sampling

• How to ensure sample representativeness;
 – Good sampling procedure
 – Adequate sample size
 – Take into participation (response) into consideration
Sampling

• When can we take entire population?
 – When population is very small
 – When you have extensive resources (time, money, manpower)
 – When expected response is low.
Sampling

Target population

Source population

Study population

Sampling Frame

Sample
Example

Target population: Adults in KB with DM

Source population: Adults with DM who received Rx at any health clinic in KB

Study population: Adults with DM who received Rx at KK Bandar KB

Sampling Frame: Those who fulfilled study criteria

Sample
Types of sampling method

• 2 types
 1. Probability random sampling
 2. Non-probability sampling
Types of sampling method

• 2 types

 1. Probability random sampling
 a. Simple random sampling
 b. Systematic sampling
 c. Stratified sampling
 d. Cluster sampling
 e. Multistage sampling
 2. Non-probability sampling
Types of sampling method

• 2 types
 1. Probability random sampling
 2. Non-probability sampling
 a. Convenience sampling
 b. Purposive sampling
 c. Quota sampling
 d. Snowball sampling
PROBABILITY SAMPLING
Probability sampling

• Every unit in the frame has equal probability of being selected as study participants.
Simple random sampling

• Applicable when
 – Population is small
 – Homogenous population
 – Sampling frame is readily available
• Each unit of the frame has an equal probability of selection.
• A number is assigned to each unit in the sampling frame
• A table of random number or lottery system is used to determine which units are to be selected.
Systematic sampling

- Relies on arranging the study population according to some ordering scheme and then selecting units at regular intervals through that ordered list.
- Involves a random start
- Proceeds with the selection of every k th element from the onward

\[k = \frac{\text{population size}}{\text{sample size}} \]
Systematic sampling

• Advantages;
 – Easy to select sample
 – Suitable “sampling frame” can be identified easily
 – Sample evenly spread over entire reference population

• Disadvantages
 – Sample may be biased if hidden periodically in population coincides with that of selection
Stratified sampling

- Where population embraces a number of distinct categories, the sampling frame can be organized into separate “strata”.
- Each stratum is then sampled as an independent sub population
- Every unit in a stratum has same chance of being selected.
Stratified sampling

- Adequate representativeness of minority subgroups of interest can be assured by stratifying and varying sampling fraction between strata is required.
Stratified sampling

• Disadvantages;
 – Sampling frame of entire population has to be prepared separately for each stratum
 – Complicating design/analysis with multiple stratification
 – Potentially require a larger sample size
Cluster sampling

• Population divided into clusters of homogenous units (usually based on geographical contiguity)
• Sampling units are groups rather than individuals.
• A sample of such clusters is then selected.
• All units from the selected cluster are studied
Cluster sampling

• Advantages;
 – Cuts cost of preparing a sampling frame
 – Reduce travel and administrative cost

• Disadvantages
 – Sampling error is higher compared to simple random sampling of same size.
Multistage sampling

• Requires at least two stages
 – First stage: clusters are identified and selected
 – Second stage: units within the selected clusters are selected using any possible probability sampling method
NON-PROBABILITY SAMPLING
Non-probability sampling

- Elements are chosen arbitrarily
- No way to estimate the probability of any element being included in the sample
- Advantages;
 - Quick
 - Inexpensive
 - Convenience
Convenience

- Also known as
 - Grab sampling
 - Opportunity sampling
 - Haphazard sampling
 - Accidental sampling

- Sample those who are readily available and convenient
Purposive

• Also known as judgemental sampling
• Researcher chooses the sample based on who they think would be appropriate for the study.
Quota

- Population is segmented into mutually exclusive sub-groups.
- Judgement used to select subjects or unit from each groups based on a specified proportion (non-random).
Snowball sampling

- Similar to convenience sampling with the existing subjects are used to recruit more subjects into the sample.
INCLUSION / EXCLUSION CRITERIA
What is inclusion / exclusion criteria

- Also known as study criteria
- Used to ensure precision of a study
- To make sure study results are reproducible
- Who can be considered the potential study participants and who cannot need to be clearly determined
- Criteria are based on factors such as socio-demographic factors, disease severity, previous treatment, presence of comorbidities, etc.
What is inclusion / exclusion criteria

• Inclusion criteria
 – Criteria for someone to be included in the study
 – Can be screened easily
 – Example:
 • age between 12-60 years old,
 • Malay,
 • man.
What is inclusion / exclusion criteria

• Exclusion criteria
 – Criteria for someone to be excluded from the study
 – More difficult to be screened
 – Example:
 • Patients with abnormal LDL level
 • Patients with abnormal ECG changes
Importance of study criteria

• Inclusion / exclusion criteria need to be defined in an objective manner
• Aim is for consistency in participants selection
• Determine to whom the study results can be inferred to
THANK YOU.